PART - A

Answer ALL the questions:

(10x2=20 Marks)

1. Define Random Experiment.
2. What is the chance that a leap year selected at random will contain 53 Sundays?
3. State the Axiomatic Definition of Probability.
4. If $B \subset A$, show that $P(B) \leq P(A)$.
5. Define Conditional Probability.
6. For two independent events A and $\mathrm{B}, \mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{B})=0.5$, Find $\mathrm{P}(\mathrm{A} \mathrm{U} \mathrm{B})$
7. A bag contains 3 Red and 5 Green Balls. Two balls are drawn at random without replacement. Find the probability that both balls drawn are green.
8. Three percent of a given lot of manufactured parts are defective. What is the probability that in a sample of four items none will be defective?
9. A coin is tossed two times. Let X be the random variable denotes the number of Heads that occurred. Find the distribution of X and its mean value.
10. X and Y are independent variables with means 10 and 20 and variances 2 and 3 respectively. Find the variance of $(3 \mathrm{X}+4 \mathrm{Y})$.

PART - B

Answer any FIVE Questions:

$$
\text { (5 x } 8=40 \text { Marks) }
$$

11. Five salesmen A, B, C, D, and E of a company are considered for a three member trade delegation to represent the company in an international trade conference. Construct the sample space and find the probability that (i) A is selected (ii) A is not selected and (iii) Either A or B (not Both) is selected.
12. An MBA applies for a job in two firms X and Y. The probability of his being selected in firm X is 0.7 and being rejected in Y is 0.5 . The probability of at least one of his applications being rejected is 0.6 . What is the probability that he will be selected by at least one firm?
13. For any three events A, B and C , prove that:
$\mathrm{P}(\mathrm{A} \cup \mathrm{B} \mid \mathrm{C})=\mathrm{P}(\mathrm{A} \mid \mathrm{C})+\mathrm{P}(\mathrm{B} \mid \mathrm{C})-\mathrm{P}(\mathrm{A} \cap \mathrm{B} \mid \mathrm{C})$.
14. Let A and B be two events such that $P(A)=3 / 4$ and $P(B)=5 / 8$, show that:
(i) $\mathrm{P}(\mathrm{A} \cup \mathrm{B}) \geq 3 / 4$ and (ii) $3 / 8 \leq \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq 5 / 8$.
15. From a city population, the probability of selecting (i) a male or a smoker is $7 / 10$. (ii) a male smoker is $2 / 5$, and (iii) a male, if a smoker is already selected is $2 / 3$. Find the probability of selecting (a) a non- smoker, (b) a male, and (c) a smoker, if a male is first selected.
16. The chances that doctor A will diagnose a disease X correctly is 60%. The chances that a patient will Die by his treatment after correct diagnosis is 40% and the chance of death by wrong diagnosis is 70%. A patient of doctor A, who had disease X, died. What is the chance that his disease was diagnosed correctly?
17. The incidence of a certain disease in an industry is such that on an average 20% of workers suffer from it. If 7 workers are selected at random, what is the probability that 5 or more have got the disease? Also obtain the mean and standard deviation of the distribution.
18. Given the p.d.f of a continuous random variable X as follows:

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =\mathrm{kx}(1-\mathrm{x}), \quad 0<\mathrm{x}<1 \\
& =0, \quad \text { otherwise }
\end{aligned}
$$

Find $k, E(X)$ and $\operatorname{Var}(X)$.

PART - C

Answer any TWO questions:

($2 \times 20=40$ Marks)
19. (a) A bag contains 4 red and 3 blue balls. Two drawings of 2 balls are made. Find the chance that the first drawing gives 2 red balls and the second drawing 2 blue balls
(i) if the balls are returned to the bag after the first draw
(ii) if the balls are not returned.
(b) Three groups of children contain respectively 3 girls and 1 boy and 2 girls and 2 boys and 1 girl and 3 boys. One child is selected at random from each group.

Find the chance that the 3 selected comprise 1 girl and 2 boys.
20. (a) Prove that if A and B are independent, then A^{c} and B^{c} are independent.
(b) Show that $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \geq \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-1$
(c) A box contains 6 red, 4 white, 5 black balls. A person draws 4 balls from the box at random. Find the probability that among the balls drawn there is at least one ball of each colour. $\quad(6+6+8)$

21 (a) State and prove Bayes Theorem.
(b) A manufacturing firm products steel pipes in 3 factories with daily production of 500, 1000, and 2000 units respectively. According to past experience it is known that the fraction of defective outputs produced by the 3 factories are respectively $0.005,0.008$ and 0.01 . A pipe is selected at random from a day's total production and found to be defective. What is the probability that the pipe came from the second factory?

22 (a) State and prove Addition Theorem for 3 events.
(b) A thief has a bunch of ' n ' keys. He tries the keys at random to rob a house. What is the probability that he will succeed in his $r^{\text {th }}$ trial when he samples the keys (i) with replacement; (ii) without replacement

